



# **FIJESRT** INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY

## GUST FACTOR METHOD FOR WIND LOADS ON BUILDINGS AND INDIAN CODAL PROVISIONS

Er. Mayank Sharma<sup>\*1</sup>, Er. Bhupinder Singh<sup>2</sup> & Er. Ritu Goyal<sup>3</sup>

<sup>\*1</sup>M.Tech student Structural Engineering, Indo Global College of Engg.& Tech., Abhipur, Mohali <sup>2</sup>Assistant Professor of Civil Engg, Indo Global College of Engg. & Technology, Abhipur, Mohali <sup>3</sup>Assistant Professor & HOD of Civil Engg, Indo Global College of Engg. & Tech., Abhipur, Mohali

### **DOI**: 10.5281/zenodo.1207009

### ABSTRACT

The last century has witnessed remarkable developments in the treatment of wind loading in structural design. During this period the description of wind loading has moved from relatively simple, straight forward, static drag forces to much more sophisticated models, involving all the manifold aspects of climate, meteorology, aerodynamics, dynamics and more recently the reliability.

Present Indian Codal Provisions incorporate basic wind speed map based on statistical analysis of peak winds (3 seconds) extreme wind speed data recorded at 43 Meteorological stations spread over the whole country. The code also underlines that the flexible structures should be designed by Peak Wind Approach as well as Mean Wind Approach associated with Gust Factor and severe of the two is to be considered as design load. The hourly wind speeds required in Gust Factor Method have been suggested by converting peak wind speeds referred as basic wind speeds in the code. The present study has been undertaken with the objective of critically examining the Gust Factor Method incorporated in the present Indian Standard for wind loads, IS 875 (Part 3) 1987. For the study 25 storied framed steel building having square shape in all the four terrain categories has been chosen. The wind loads induced at various heights, base shear and base moments for the building has been computed by Peak Wind Approach as well as Mean wind Approach associated with Gust Factor. There are wide variations in the values obtained by two approaches.

Further hourly mean wind speed as obtained from literature was used for analyzing the building and the results were obtained. The perusal of results reveals that the values obtained are consistently less than those obtained by the Gust Factor Method incorporated in the code.

On comparison of results for four terrain categories for three cases (a) Peak Wind Approach, (b) Mean Wind Approach associated with Gust Factor and (c) Gust Factor Method using hourly mean wind speeds based on hourly mean wind speed data, wide variations in the values have been observed. This emphasizes uncertainties involved in the values given in the code.

Keywords: Gust Factor, Peak Wind Approach-Static Method, Mean Wind Approach-Gust Factor Method.

### I. INTRODUCTION

The last century has witnessed remarkable developments in the treatment of wind loading in structural design. During this period the description of wind loading has moved from relatively simple, straight-forward, static drag forces to much more sophisticated models, involving all the manifold aspects of climate, meteorology,, aero-dynamics, dynamics and more recently the reliability.

The considerable changes in the building techniques have tended to make tall and flexible structures more susceptible to the action of wind. Wind loadings are now assuming a greater significance in relation to the other forces imposed on the structures and have thus become an important consideration in the design of low as well as tall flexible structures.

For designing wind sensitive structures, proper assessment of wind loads is necessary. In the evolution of structural design for wind loads, methods have vastly improved during the last few decades from simple static wind load to quasi-static approach and then on to refined dynamic wind load for more wind sensitive structures.



ISSN: 2277-9655 Impact Factor: 5.164 CODEN: IJESS7

The assessment of wind loads on a structure is mainly done by referring to wind loading codes or standards which are mainly based on the concept of assessment of wind climate of the region using statistical/probabilistic approach and accounting modification for probability, local topography, terrain height and structural size. The purpose of the code is to provide as far as practicable, simple analytical procedures for the determination of wind loads for a broad class of structures as wind loading designs cannot be exhaustive in their coverage. The Codal Provisions cannot cater to structures of all shapes, forms, sizes and topography of the site. As a result, there is a risk that somewhat empirical procedures may endanger the safety of the structure.

Present Indian Codal Provisions incorporate basic wind speed map based on statistical analysis of extreme peak winds (3 second) wind speed data recorded at 43 meteorological stations spread over the whole country. Like previous version of the code Static Method based on Peak Wind Approach retained in the current version of the code. However Gust Factor Method has also been included in the code. The code also underlines that flexible structures should be designed by peak wind Approach as well as Mean Wind Approach associated with Gust Factor and maximum of the two is to be taken as design load.

Maximum wind speeds averaged over one hour are required in Gust Factor Method. A conversion table (Table 33) for obtaining hourly mean wind speeds has been incorporated in the code. The code also underlines that:

"It must also be recognized that the ratio of hourly mean wind(HMW) to peak speed given in Table 33 may not be obtainable in India since extreme wind occurs. Mainly due to cyclones and thunderstorms unlike in U.K and Canada where the mechanism is fully developed pressure system. However, Table 33 may be followed at present for the estimation of the hourly mean wind speed till more reliable values become available".

Perusal of relevant literature shows that maximum hourly mean wind speed data is available with Indian Meteorological department. Extreme value statistical analysis of yearly maximum hourly mean wind speeds over consecutive years has been carried out by Sharma (1993,1994). These values of hourly mean wind speeds can be used in Gust Faxctor Method for computing wind loads on structures. Sharma Shruti (2002) and Kutar, Virpal (2003) carried out some studies relating to wind loads on buildings. Sharma, Mayank (2018) carried out extensive work on various buildings for computing wind loads by various methods.

The study presented here has been taken with the objective of critically examining the Gust Factor Method incorporated in the present Indian Standard for wind loads, IS 875 (Part 3) 1987. For this purpose overall effect on a building in the form of wind loads have been obtained by:

- 1. Peak Wind Approach associated with Static Method as per IS 875 (Part 3) 1987. (PWA-SM).
- 2. Mean Wind Approach associated with Gust Factor as per IS 875 (Part 3) 1987. (MWA-GFM).
- 3. Mean Wind Approach associated with Gust Factor\* as per IS 875 (Part 3) 1987. (MWA-GFM\*) but using hourly mean wind speeds based on statistical analysis of hourly mean wind speeds and taken from literature.

## II. CASE STUDY

For critically examining Gust Factor Method as incorporated in IS 875 (Part 3) 1987 a multistoreyed framed steel building has been chosen as a case study. The building is 5 bays x 5 bays square in plan. Each bay is of 8 metres. The building is 40m x 40m in plan with height of 102 metres. It is of 25 storeys and each storey is of 4m height except first storey which is of 6m height. The parapet is of one metre height. The natural frequency is 1.451485 hertz and damping coefficient is 0.02. The plan dimensions and elevation have been shown in Figure 1 and Figure 2 respectively.

The building has been taken in Delhi zone for which basic wind speed is 47 m/s. The building has been analysed for wind loads in all the four Terrain Categories.



ISSN: 2277-9655 Impact Factor: 5.164 CODEN: IJESS7




Figure 2 Elevation of the Building



ISSN: 2277-9655 Impact Factor: 5.164 CODEN: IJESS7

## III. RESULTS

Wind loads at various floor levels of the building chosen for case study in all the four terrain categories have been obtained as per IS 875 (Part 3) 1987 by the following methods.

- a. Peak Wind Approach-Static Method (PWA-SM).
- b. Mean Wind Approach-Gust Factor Method (MWA-GFM).
- c. Mean Wind Approach-Gust Factor Method\* (MWA-GFM\*).

In which hourly mean wind speeds taken from literature have been used instead of using conversion table for obtaining hourly mean wind speeds from three second peak winds, which has been given in the code. The procedure listed in the code for Gust Factor Method has been used except hourly mean wind speeds.

### Peak Wind Approach- Static Method(PWA-SM)

#### Basic wind speed, Vb=47 m/s

 $Vz = Vb k_1 \overline{k}_2 k_3$ 

where

Vz= Design wind speed at any height 'z' m from ground in m/s.

Vb= Basic wind speed in m/s.

 $k_1$ = Probability Factor (risk coefficient)=1.0 for 50 year return period.

 $\overline{k}_2$ = Terrain height and structure size factor.

k<sub>3</sub>= Topography factor and is 1.0 for plane topography.

Design wind pressure at any height 'z'm above mean ground level is obtained by

 $p_z = 0.6 Vz^2$ 

where

 $p_z$  = design wind pressure in N/m<sup>2</sup> at height 'z' m.

Vz= design wind velocity in m/s at height 'z' m

Design wind load at any height =  $p_z CpA$ 

where

 $p_z$ = design wind pressure at any height 'z' m

Cp= resultant pressure coefficient

A= area normal to wind direction contributing load at the desired height.

The results for building chosen for case study have been obtained in Terrain Categories (TC) 1,2,3 and 4. The values of base shear and overturning moments have also been computed and given in the respective tables.

## Mean Wind Approach- Gust Factor Method (MWA-GFM)

### a. Design Wind Pressure.

The variation of hourly mean wind speed with height is calculated as follows:

 $\overline{V}_{z} = Vb \ k_1 \overline{k}_2 \ k_3$ 

where

 $\overline{V}_z$  = hourly mean wind speed in m/s at height 'z' m

Vb= regional basic wind speed in m/s.

k<sub>1</sub>= probability factor

 $\overline{k}_2$ = terrain and height factor (from Table 33)

 $k_3$ = topography factor Design wind pressure ' $\bar{p}_z$ ' = 0.6  $\bar{\nabla}_z^2$ 

#### Where

 $\overline{p}_z$ = design wind pressure at height 'z' m

 $\overline{V}_z$ = hourly mean wind speed in m/s at height 'z' m.

### b. Along Wind Load

Along Wind Load on the structure on a strip area (A) at any height 'z'm is given by:  $F_z = C_f A \overline{p}_z G$ 

where:

 $F_z$ = along wind load on the structure at any height 'z' corresponding to strip area A.  $C_f$ = force coefficient for the building.

A= effective frontal area considered for the structure at height'z' m.

 $\overline{p}_z$  = design pressure at height 'z', due to hourly mean wind obtained as  $0.6\overline{V}_z^2$  (N/m<sup>2</sup>)

G= Gust Factor [(peak load)/(mean load)], and is given by:



ICTM Value: 3.00

ISSN: 2277-9655 Impact Factor: 5.164 CODEN: IJESS7

 $G = 1 + g_f r \sqrt{[B(1+a)^2 + (SE/\beta)]}$ 

where:

 $g_{\rm f}\!\!=\!$  peak factor defined as the ratio of the expected peak value to the root mean value of fluctuating load, and

r= roughness factor which is dependant on the size of the structure in relation to ground roughness.

The value of 'g<sub>f</sub>r' is obtained from the curves given in code.

B= background factor indicating a measure of slowly varying component of fluctuating wind load and is obtained from the curves given in the code.

 $SE/\beta$ = measure of the resonant component of the fluctuating wind load,

S= Size reduction factor and is obtained from the curves given in the code.

E= measure of available energy in the wind stream at the natural frequency of the structure and is obtained from the curve given in code.

 $\beta$  = damping coefficient (as a fraction of critical damping) of the structure.

 $\approx = [(gfr\sqrt{B})/4]$  and is accounted only for buildings less than 75 m high in terrain category 4 and for buildings less than 25m high in terrain category 3, and is to be taken as zero in all other cases. The values of Gust Factor for the building in different terrain categories were obtained.

The wind loads at various levels along the height have been obtained for the chosen building in all the four terrain categories by Mean Wind Approach- Gust Factor Method along with base shear and base moments.

### Mean Wind Approach- Gust Factor Method\*.

The procedure folloyed for computing wind load is same as laid down in IS 875(Part 3)-1987. However, hourly mean wind speeds used are based on statistical analysis of hourly mean wind speed data available in literature instead of using conversion table given in the code for converting 3-second winds to hourly mean wind speeds at various heights in different terrain categories.

The values of wind loads at various levels along the height for the chosen building in the four terrain categories have been obtained. The values of base shear and base moments have also been obtained. Wind Force variation with height for the building as per PWA-SM, MWA-GFM and MWA-GFM\* in Terrain Category 1, Terrain Category 2, Terrain Category 3 and Terrain Category 4 have been given in table I through Table 4 respectively. The same has also been shown in Figure 1 through Figure 4 respectively.

|        |            | Terrain Category |             |            |
|--------|------------|------------------|-------------|------------|
| Storey | Height (m) | ₽z(PWA-          | ₽z(MWA-     | ₽z(MWA-    |
|        |            | SM)              | GFM)        | GFM*)      |
| 1      | 6          | 272.7951534      | 337.013263  | 307.451708 |
| 2      | 10         | 218.2361227      | 269.6106104 | 245.961367 |
| 3      | 14         | 232.5723277      | 292.1862891 | 262.555069 |
| 4      | 18         | 244.5562764      | 311.1972937 | 276.214075 |
| 5      | 22         | 253.0292087      | 324.7097308 | 287.281892 |
| 6      | 26         | 258.7579904      | 333.8775551 | 296.783713 |
| 7      | 30         | 264.5509003      | 343.1730057 | 306.440123 |
| 8      | 34         | 269.427312       | 351.0167069 | 312.90056  |
| 9      | 38         | 274.3482571      | 358.9490375 | 319.428389 |
| 10     | 42         | 279.3137357      | 366.9699974 | 326.023609 |
| 11     | 46         | 284.3237477      | 375.0795868 | 332.686221 |
| 12     | 50         | 289.3782931      | 383.2778056 | 339.416224 |
| 13     | 54         | 291.8202932      | 387.2444317 | 343.32805  |
| 14     | 58         | 294.2725538      | 391.2314781 | 347.262288 |
| 15     | 62         | 296.7350749      | 395.2389447 | 351.21894  |
| 16     | 66         | 299.2078565      | 399.2668315 | 355.198006 |
| 17     | 70         | 301.6908986      | 403.3151385 | 359.199484 |

| Table 1: Wind Force (kN) variation with height for the building as per PWA-SM, MWA-GFM and MWA-GFM* in |
|--------------------------------------------------------------------------------------------------------|
| Terrain Category 1 (TC 1)                                                                              |

http://www.ijesrt.com@International Journal of Engineering Sciences & Research Technology



## ISSN: 2277-9655 Impact Factor: 5.164 CODEN: IJESS7

| <br> |     |             |             |            |
|------|-----|-------------|-------------|------------|
| 18   | 74  | 304.1842012 | 407.3838657 | 363.223376 |
| 19   | 78  | 306.6877643 | 411.4730132 | 367.26968  |
| 20   | 82  | 309.201588  | 415.5825808 | 371.338399 |
| 21   | 86  | 311.7256721 | 419.7125687 | 375.42953  |
| 22   | 90  | 314.2600167 | 423.8629767 | 379.543074 |
| 23   | 94  | 316.8046219 | 428.033805  | 383.679032 |
| 24   | 98  | 319.3594875 | 432.2250535 | 387.837403 |
| 25   | 102 | 321.4963801 | 326.8000195 | 293.415845 |

| Table 2: Wind Force(kN) variation with height for the building as per PWA-SM, MWA-GFM and MWA-GFM* in |
|-------------------------------------------------------------------------------------------------------|
| Terrain Category 2 (TC 2).                                                                            |

| Storey | Height (m) | Pz(PWA-SM) Pz(MWA- Pz(MWA- |                        | Pz(MWA-    |
|--------|------------|----------------------------|------------------------|------------|
|        |            |                            | GFM)                   | GFM*)      |
| 1      | 6          | 240.7310766                | 272.0410979            | 233.240424 |
| 2      | 10         | 192.5848613                | 217.6328783            | 186.592339 |
| 3      | 14         | 206.0660242                | 244.3945956            | 206.410441 |
| 4      | 18         | 217.3552513                | 264.050883             | 222.565562 |
| 5      | 22         | 226.2441259                | 278.5565095            | 236.382667 |
| 6      | 26         | 233.4834819                | 290.4402633            | 248.45582  |
| 7      | 30         | 222.6672                   | 302.5722418            | 259.349433 |
| 8      | 34         | 246.4266809                | 311.8341231            | 269.353515 |
| 9      | 38         | 252.0806465                | 321.2356307            | 278.498734 |
| 10     | 42         | 257.7987401                | 330.7767647            | 286.986879 |
| 11     | 46         | 263.580962 340.4575251     |                        | 294.87827  |
| 12     | 50         | 269.427312                 | 350.2779118            | 302.387905 |
| 13     | 54         | 272.1775547 354.9085421    |                        | 309.464516 |
| 14     | 58         | 274.9417632 359.56958 31   |                        | 316.156522 |
| 15     | 62         | 277.7199373                | 73 364.2610254 325.550 |            |
| 16     | 66         | 280.5120771                | 368.9828783 328.5997   |            |
| 17     | 70         | 283.3181826                | 373.7351387            | 334.517401 |
| 18     | 74         | 286.1382538                | 378.5178067            | 340.142262 |
| 19     | 78         | 288.9722907                | 383.3308821            | 345.500594 |
| 20     | 82         | 291.8202932                | 388.1743651            | 350.690304 |
| 21     | 86         |                            |                        | 355.795028 |
| 22     | 90         | 297.5581954                | 397.9525536            | 360.580858 |
| 23     | 94         | 300.448095                 | 402.8872591            | 365.398661 |
| 24     | 98         | 303.3519603                | 407.8523722            | 369.888097 |
| 25     | 102        | 305.6433661                | 308.8311482            | 280.803709 |
|        |            |                            |                        |            |



IC<sup>TM</sup> Value: 3.00

ISSN: 2277-9655 Impact Factor: 5.164 CODEN: IJESS7

Table 3: Wind Force (kN) variation with height for the building as per PWA-SM, MWA-GFM and MWA-GFM\* in Terrain Category 3 (TC 3).

| <u>3 (IC 3).</u> |           |             |             | Pz(MWA-     |
|------------------|-----------|-------------|-------------|-------------|
| Storey           | Height(m) | Pz(PWA-     |             |             |
|                  |           | SM)         | GFM)        | GFM*)       |
| 1                | 6         | 187.1517816 | 165.4314578 | 89.51641919 |
| 2                | 10        | 149.7214253 | 132.3451662 | 71.61313535 |
| 3                | 14        | 164.6846611 | 154.3674019 | 86.0606168  |
| 4                | 18        | 169.4679445 | 174.4182239 | 99.1265524  |
| 5                | 22        | 188.4655181 | 190.5770393 | 110.6965718 |
| 6                | 26        | 196.7487379 | 203.4939275 | 121.3732055 |
| 7                | 30        | 205.2100915 | 216.8343203 | 132.54129   |
| 8                | 34        | 210.3724079 | 225.0418381 | 140.8027874 |
| 9                | 38        | 209.3348144 | 233.4018176 | 149.3140358 |
| 10               | 42        | 220.8894251 | 241.9142587 | 158.0750351 |
| 11               | 46        | 226.2441259 | 250.5791614 | 167.0857853 |
| 12               | 50        | 231.6629549 | 259.3965258 | 176.3202891 |
| 13               | 54        | 234.5792183 | 264.7601259 | 182.4241722 |
| 14               | 58        | 237.5137226 | 270.1786123 | 188.6319177 |
| 15               | 62        | 240.4664678 | 275.6519849 | 194.9435257 |
| 16               | 66        | 243.4374539 | 281.1802437 | 201.3589962 |
| 17               | 70        | 246.4266809 | 286.7633886 | 207.8783292 |
| 18               | 74        | 249.4341488 | 292.4014197 | 214.5015246 |
| 19               | 78        | 252.4598576 | 298.094337  | 221.2285824 |
| 20               | 82        | 255.5038073 | 303.8421406 | 228.0595028 |
| 21               | 86        | 258.5659979 | 309.6448302 | 234.9942856 |
| 22               | 90        | 261.6464294 | 315.5024061 | 242.0329309 |
| 23               | 94        | 264.7451017 | 321.4148682 | 249.1754386 |
| 24               | 98        | 267.862015  | 327.3822165 | 256.4218089 |
| 25               | 102       | 270.4079383 | 249.046075  | 196.9429107 |

Table 4: Wind Force (kN)variation with height for the building as per PWA-SM, MWA-GFM and MWA-GFM\* in Terrain Category 4 (TC 4).

| Storey | Height (m) | Pz(PWA-SM)  | Pz(MWA-<br>GFM) | Pz(MWA-<br>GFM*) |
|--------|------------|-------------|-----------------|------------------|
| 1      | 6          | 124.9441326 | 46.68927        | 37.7712628       |
| 2      | 10         | 99.95530608 | 37.35141        | 30.21701024      |
| 3      | 14         | 99.95530608 | 37.35141        | 39.3447263       |
| 4      | 18         | 99.95530608 | 37.35141        | 48.19785406      |
| 5      | 22         | 109.7312868 | 43.83603        | 55.99470003      |
| 6      | 26         | 130.6513156 | 58.36158        | 62.87252302      |
| 7      | 30         | 153.3954341 | 74.96221        | 70.14864006      |
| 8      | 34         | 162.3947516 | 84.97706        | 77.35554622      |
| 9      | 38         | 171.6505818 | 95.61962        | 84.91478496      |
| 10     | 42         | 181.1629246 | 106.8899        | 86.67047179      |
| 11     | 46         | 190.93178   | 118.7879        | 101.0902602      |
| 12     | 50         | 200.957148  | 131.3136        | 109.7064967      |
| 13     | 54         | 204.3559401 | 136.976         | 115.3778675      |

http://www.ijesrt.com@International Journal of Engineering Sciences & Research Technology



## ISSN: 2277-9655 Impact Factor: 5.164 CODEN: IJESS7

| • |    |     |             |          | $\sim$      |
|---|----|-----|-------------|----------|-------------|
|   | 14 | 58  | 207.7832337 | 142.758  | 121.1921605 |
|   | 15 | 62  | 211.2390286 | 148.6596 | 127.1493757 |
|   | 16 | 66  | 214.723325  | 154.6806 | 133.2445119 |
|   | 17 | 70  | 218.2361227 | 160.8212 | 139.4925727 |
|   | 18 | 74  | 221.7774219 | 167.0813 | 145.8785546 |
|   | 19 | 78  | 225.3472224 | 173.4609 | 152.4074586 |
|   | 20 | 82  | 228.9455244 | 179.96   | 159.0792848 |
|   | 21 | 86  | 232.5723277 | 186.5787 | 166.312827  |
|   | 22 | 90  | 236.2276325 | 193.3169 | 172.8517039 |
|   | 23 | 94  | 239.9114386 | 200.1746 | 179.9522967 |
|   | 24 | 98  | 243.6237462 | 207.1519 | 187.1958118 |
|   | 25 | 102 | 246.4266809 | 159.5702 | 145.1816019 |

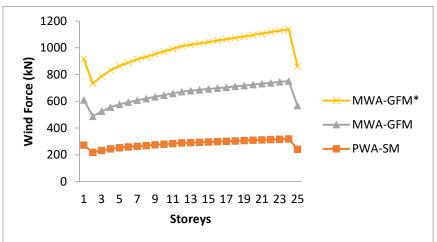



Figure 3 Graphical representation of Wind Force variation along storeys for 25 storey building as per PWA-SM, MWA-GFM and MWA-GFM\* in Terrain Category 1

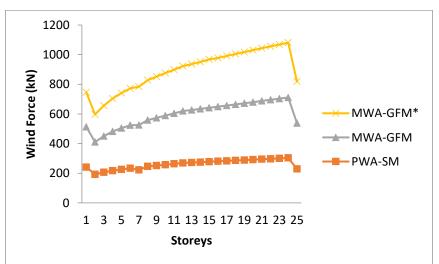



Figure 4 Graphical representation of Wind Force variation along storeys for 25 storey building as per PWA-SM, MWA-GFM and MWA-GFM\* in Terrain Category 2



ISSN: 2277-9655 Impact Factor: 5.164 CODEN: IJESS7

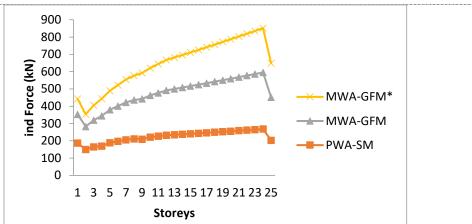



Figure 4 Graphical representation of Wind Force variation along storeys for 25 storey building as per PWA-SM, MWA-GFM and MWA-GFM\* in Terrain Category 3



Figure 5 Graphical representation of Wind Force variation along storeys for 25 storey building as per PWA-SM, MWA-GFM and MWA-GFM\* in Terrain Category 4

The values of base shear as obtained by PWA-SM, MWA-GFM and MWA-GFM\* in different terrain categories have been given in Table 5.

| T.C. | PWA-SM        |                     | MWA-GFM       |                     | MWA-GFM*      |                     |
|------|---------------|---------------------|---------------|---------------------|---------------|---------------------|
|      | Magnitude(kN) | Ratio wrt<br>PWA-SM | Magnitude(kN) | Ratio wrt<br>PWA-SM | Magnitude(kN) | Ratio wrt<br>PWA-SM |
| 1    | 7048.36       | 1                   | 9288.43       | 1.3178              | 8291.086      | 1.1763              |
| 2    | 6509.32       | 1                   | 8406.32       | 1.2914              | 7408.19       | 1.1381              |
| 3    | 5575.40       | 1                   | 6243.66       | 1.1199              | 4321.12       | 0.7750              |
| 4    | 4595.25       | 1                   | 3048.68       | 0.6713              | 2749.6        | 0.5984              |

| Table 5: Base shear as obtained by | PWA-SM | , MWA-GFM and MW | A-GFM* in | n different terrain categories. |
|------------------------------------|--------|------------------|-----------|---------------------------------|
|                                    |        |                  |           |                                 |

The values of base moments obtained as per PWA-SM, MWA-GFM and MWA-GFM\* in various terrain categories have been given in Table 6.



ICTM Value: 3.00

Table 6: Base moments obtained as per PWA-SM, MWA-GFM and MWA-GFM\* in various terrain categories.

| T.C. | PWA-SM              |                         | MWA-GFM       |                     | MWA-GFM*            |                     |
|------|---------------------|-------------------------|---------------|---------------------|---------------------|---------------------|
|      | Magnitude(kN-<br>m) | Ratio wrt<br>PWA-<br>SM | Magnitude(kN) | Ratio wrt<br>PWA-SM | Magnitude(kN-<br>m) | Ratio wrt<br>PWA-SM |
| 1    | 395211.5            | 1                       | 527114.86     | 1.3338              | 470392.97           | 1.190231            |
| 2    | 369604.2            | 1                       | 486435.38     | 1.3161              | 433581.70           | 1.1731              |
| 3    | 321146.9            | 1                       | 372999.95     | 1.1615              | 270593.49           | 0.8426              |
| 4    | 278778.4            | 1                       | 205470.02     | 0.7370              | 181908.21           | 0.6525              |

Further with a view to highlight the differences in values of base shear and base moments as obtained from MWA-GFM and MWA-GFM\* in various terrain categories these have been given in Table 7 and Table 8.

| Table 7: Base shear as obtained | rom MWA-GFM and MWA-GFM* in various terrain categories. |
|---------------------------------|---------------------------------------------------------|
|                                 |                                                         |

| T.C. | MWA-GFM       |                | MWA-GFM*      |                |
|------|---------------|----------------|---------------|----------------|
|      | Magnitude(kN) | Ratio wrt MWA- | Magnitude(kN) | Ratio wrt MWA- |
|      |               | GFM*           | _             | GFM*           |
| 1    | 9288.43       | 1.1203         | 8291.09       | 1              |
| 2    | 8406.32       | 1.1347         | 7408.19       | 1              |
| 3    | 6243.66       | 1.4449         | 4321.12       | 1              |
| 4    | 3084.68       | 1.1219         | 2749.6        | 1              |

Table 8: Base moments as obtained from MWA-GFM and MWA-GFM\* in various terrain categories.

| T.C. | MWA-GFM   |                | MWA-GFM*  |                |
|------|-----------|----------------|-----------|----------------|
|      | Magnitude | Ratio wrt MWA- | Magnitude | Ratio wrt MWA- |
|      | (kN-m)    | GFM*           | (kN-m)    | GFM*           |
| 1    | 527114.86 | 1.1206         | 470392.97 | 1              |
| 2    | 486435.38 | 1.1219         | 433581.70 | 1              |
| 3    | 372999.94 | 1.3785         | 270593.50 | 1              |
| 4    | 205470.02 | 1.1295         | 181908.21 | 1              |

## IV. DISCUSSION OF RESULTS

For critical appraisal of Gust Factor Method incorporated in IS 875 (Part 3) 1987, wind loads on a 25 storeyed steel building with wind loads in Delhi zone in Terrain Category 1, Terrain Category 2, Terrain Category 3 and

Terrain Category 4 have been obtained by:

- a. Peak Wind Approach- Static Method (PWA-SM).
- b. Mean Wind Approach-Gust Factor Method (MWA-GFM).
- c. Mean Wind Approach-Gust Factor Method\* (MWA-GFM\*).

Hourly mean wind speed in (b) have been obtained from conversion table given in the code (Table 33). Hourly mean wind speeds used in (c) are those based on statistical analysis of hourly mean wind speed data available with Indian Meteorological Department (IMD) and taken from literature.

- 1. The values of hourly mean wind speeds as obtained from conversion table given in IS 875 (Part 3), 1987 are consistently more than those based on statistical analysis of hourly mean wind speeds data. The values of hourly mean wind speeds play a vital role on the value of wind loads.
- 2. For Terrain Category 1, Terrain Category 2 and Terrain Category 3 the values of wind loads at various levels are the largest as per MWA-GFM. The values obtained as per MWA-GFM\* are the second largest whereas those obtained as per PWA-SM are the least. The same trend has been obtained for base shears and base moments also.
- 3. For terrain category 4 the values of wind loads at various levels as per PWA-SM are largest followed by the MWA-GFM values. The values obtained as per MWA-GFM\* are the least. The same trend has been obtained for base shears and base moments also.
- 4. The values of base shear as per MWA-GFM and MWA-GFM\* are 1.32 times and 1.18 times the PWA-SM value in Terrain Category 1.



ICTM Value: 3.00

The values of base moment as per MWA-GFM and MWA-GFM\* are 1.33 times and 1.19 times the PWA-SM value.

5. For Terrain Category 2 the values of base shear as per MWA-GFM and MWA-GFM\* are 1.29 times and 1.14 times PWA-SM value.

The values of base moment as per MWA-GFM and MWA-GFM\* are 1.32 times and 1.17 times the PWA-SM value.

6. For Terrain Category 3, the values of base moment as per MWA-GFM and MWA-GFM\* are 1.16 times and 0.84 times the PWA-SM value. The values of base shear as per MWA GEM and MWA GEM\* are 1.12 times and 0.78 times the PWA

The values of base shear as per MWA-GFM and MWA-GFM\* are 1.12 times and 0.78 times the PWA-SM value.

7. For terrain category 4, the value of base shear as per MWA-GFM and MWA-GFM\* are 0.67 times and 0.6 times the PWA-SM value.

The values of base moment as per MWA-GFM and MWA-GFM\* are 0.74 times and 0.65 times the PWA-SM values.

8. On comparison of results obtained as per MWA-GFM and MWA-GFM\* it has been found that the values of base shears and base moments as per MWA-GFM are consistently more than those obtained as per MWA-GFM\* in all the four terrain categories.

The values of base shear as per MWA-GFM are 1.12 times, 1.35 times, 1.45 times and 1.12 times the MWA-GFM\* values in Terrain Category 1, Terrain Category 2, Terrain Category 3 and Terrain Category 4 respectively.

The values of base moment as per MWA-GFM are 1.12 times, 1.12 times, 1.38 times and 1.13 times the MWA-GFM\* values in Terrain Category 1, Terrain Category 2, Terrain Category 3 and Terrain Category 4 respectively.

## V. CONCLUSIONS

Based on the study following conclusions have been drawn:

- 1. The values of wind forces at different levels are consistently higher as per MWA-GFM as compared to MWA- GFM\* and PWA SM values in Terrain Category I and Terrain Category 2 and Terrain Category 3. The same trend has been observed for base shears and base moments.
- 2. For Terrain Category 4 the values of wind forces at various levels are consistently higher as per PWA- S M as compared to MWA- GFM and MWA- GFM\*. The same trend has been observed for base shears and base moments.
- 3. The values of base shear as per MWA- GFM are 32%, 29% and 12% more than PWA- SM vales in T.C.I., T.C.2 and T.C.3 respectively. However for Terrain Category 4 the values of base shear as per MWA- GFM is 33% less than those of PWA- SM values.
- 4. The values of base moments as per MWA- GFM are 33.4, 31.6% and 16.2% more than PWA- SM values in T.C.1, T.C.2 and T.C.3 respectively However for T.C.4 the value of base moment is 26.3% less than the value obtained as per PWA-SM.
- 5. The values of base shears as per MWA- GFM are 12%, 13.5%, 44.5% and 12.2% more than those obtained from MWA-GFM\* in T.C.1, T.C.2, T.C.3 and T.C.4 respectively.
- 6. The values of base moments obtained as per MWA-GFM are 12%, 12.2%, 37.9% and 13% more than the values obtained from MWA-GFM\* in T.C.1, T.C.2, T.C.3 and T.C.4 respectively

## VI. REFERENCES

- [1] IS: 875 (Part 3)-1987, Indian Standard Code of Practice for Design Loads (other than Earthquake) for Buildings and Structures, Part 3, Wind Loads Bureau of Indian Standards, 1987, New Delhi, India.
- [2] Sharma, Mayank (2018), "Reliability of Gust Factor Method for Wind Loading as per Indian Codal Provisions". Thesis submitted in partial fulfillment of the requirement for the award of the degree of Master of Technology in Structural Engineering Department of Civil Engineering, Indo Global College of Engineering & Technology, Abhipur, Mohali,I.K.Gujral Punjab Technical University, Jalandhar, 2018.
- [3] Sharma, Shruti, (2002), "Critical Appraisal of Indian Wind Loading Codal Provisions", Thesis submitted to Punjab University Chandigarh, in partial fulfillment of the requirements for the award of Master of Engineering in Civil Engineering (Structures), Department of Civil Engineering, Punjab Engineering College, Chandigarh-160012, March 2002.



IC<sup>TM</sup> Value: 3.00

ISSN: 2277-9655 Impact Factor: 5.164 CODEN: IJESS7

- [4] Sharma, V.R., (1993), "Spectral Characteristics and Extreme Value Analysis for Winds in India and Codal Provisions". Thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy, Department of Civil Engineering, I.T.I., Delhi, New Delhi-110016, India, 1993.
- [5] Sharma, V.R. and Seetharamulu, K. and Chaudhary K. K. (1994),"Extreme Winds and Revised Codal Provisions", Proceedings, National Seminar on Wind loads- CodalProvisions, 6-7 April,1994, SREC, Ghaziabad.pp.4-1 to 4-16.
- [6] Virpal,Kaur,(2003),"Reliability of Multi-storeyed steel Buildings to Wind Loading as per Indian Codal Provisions", Thesis submitted to the Punjab Agricultural University in partial fulfillment of the requirement of the degree of Masters of Technology (Structural Engineering), Department of Civil Engineering, C.O.A.E., P.A.U. Ludhiana., 2003

## CITE AN ARTICLE

Sharma, M., Er, Singh, B., Er, & Goyal, R., Er. (n.d.). GUST FACTOR METHOD FOR WIND LOADS ON BUILDINGS AND INDIAN CODAL PROVISIONS. *INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY*, 7(3), 621-632.